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Abstract
For second-harmonic generation the optical Kerr effect causes a cross-
phase modulation between ground and harmonic waves as well as self-phase
modulations of both waves. When only cross-phase modulation is taken into
account this system proves to be integrable by the inverse scattering method.
Here Darboux/Bäcklund transformations are established, and the resulting
phenomenology of soliton solutions is discussed and depicted.

PACS numbers: 4265K, 0230J, 4265T

1. Introduction

Frequency doubling or second-harmonic generation (SHG) was the very first process realized
in nonlinear optics [1] and, nowadays, has become a standard tool in optical laboratories. Its
theoretical treatment under stationary conditions in one space dimension was developed very
early [2]. Nevertheless, SHG still provides important aspects both from the practical and
from the theoretical points of view. Here we will not consider focusing or related transversal
effects but take into account one space dimension only. For short pulses the walk-off of the
pulses at both frequencies is of importance. The SHG equations (with no Kerr-type terms)
are ‘S-integrable’, i.e. integrable by the spectral transform or inverse scattering method [3–7].
Further restriction to pure amplitude modulation leads to ‘C-integrability’. This means that
the system is integrable by change of variables. Its solution can be given explicitly [8–11].
Without reference to the Liouville equation particular analytical solutions were given for this
system in [12]. It is of importance to notice that for SHG equations without Kerr terms no
soliton-type solutions exist.

The optical Kerr effect causes self-phase modulation of both participating waves at the
fundamental and at the harmonic frequencies, and it causes cross-phase modulation of both
components. The complete SHG–Kerr equations, (see (1) and (2) below) are probably not

0305-4470/01/255297+13$30.00 © 2001 IOP Publishing Ltd Printed in the UK 5297

http://stacks.iop.org/ja/34/5297


5298 H Steudel and A A Zabolotskii

integrable. When, however, cross-phase modulation is taken into account while self-phase
modulation is neglected this leads to a new S-integrable system, see (9) and (10). Remarkably
and in contrast to the ‘pure’ SHG equations, this system admits a rich phenomenology of
soliton solutions.

In section 2 the basic equations are introduced and transformed to a convenient form.
The equations of motion are integrability conditions of some linear system as established in
section 3. The Darboux/Bäcklund transformation for our system is developed in section 4, and
itsN -fold iteration is given in section 5. Here we make use of Vandermonde-like determinants,
whose definition is repeated in the appendix. In section 6 we study monochromatic wave
solutions, which are then used as ‘seed solutions’. The phenomenology of soliton solutions is
developed and depicted in section 7.

It is worth mentioning that there is a strong correspondence between SHG and two-photon
absorption (or, more exactly, degenerate two-photon propagation) in the limit of low excitation
(cf [6]). The harmonic wave then corresponds to the excitation amplitude of the upper level,
and cross-phase modulation corresponds to a population-dependent refraction number on one
hand and optical Stark shift on the other. The results of the present paper also apply to such a
physical system.

2. Basic equations

SHG in a Kerr medium is described by the equations

∂χq1 = −2q2q
∗
1 + i(κ11|q1|2 + κ21|q2|2)q1 (1)

∂τ q2 = q2
1 + i(κ12|q1|2 + κ22|q2|2)q2. (2)

The star denotes complex conjugation. Here it is assumed that the ground wave q1 and the
harmonic wave q2 are propagating with different group velocities v1 and v2 respectively. Then
the characteristic coordinates χ, τ are connected to the laboratory space and time coordinates
x, t by

χ = v(−t + x/v2) = −vτ2 τ = v(t − x/v1) = vτ1 (3)

where the parameter v describing the group velocity mismatch is given by

v = (1/v2 − 1/v1)
−1. (4)

For definiteness we assumev1 > v2. However, the translation of any statement or solution to the
opposite case becomes obvious. The coefficients κik are real numbers, and the corresponding
terms in (1) and (2) describe the optical Kerr effect. The SHG equations with the Kerr terms
omitted are integrable [3]. It would be of interest to ask whether the Kerr terms necessarily
destroy integrability or not. Here we will demonstrate that there is integrability under the
assumption that self-interaction terms are neglected; i.e., κ11 = κ22 = 0, κ12 and κ21 arbitrary
real.

Generally, all four κ-coefficients in (1) and (2) are expected to be of the same order of
magnitude (cf [13]). As is well known (see, e.g., [14], section 2.2.3) in a two-level model the
Kerr coefficient changes sign at exact resonance. We cannot work at exact resonance because
then the excitation of the medium would become important. However, by an appropriate
doping of the crystal combined with a proper choice of frequency it should be possible to
achieve a partial compensation of self-phase modulation terms. In summary we may conclude
that our assumption to neglect self-phase modulation is not actually unrealistic. Clearly, these
terms could be taken into account afterwards by some perturbational method.
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We wish to bring (1) and (2), with κ11 = κ22 = 0, to a convenient normal form. As a first
step we show that κ21 can be transformed to zero. Due to the conservation law

∂χ |q1|2 + 2∂τ |q2|2 = 0 (5)

which is easily verified, there is a function F(χ, τ) such that

∂τF = |q1|2 ∂χF = −2|q2|2. (6)

Then, under the transformation

q̃1 = exp[iκ21F/2]q1 q̃2 = exp[iκ21F ]q2 (7)

we obtain equations of the same structure as (1), (2) but with

κ̃12 = κ12 + κ21 κ̃21 = 0. (8)

With other words, we may take κ21 = 0 in (1), (2) without loss in generality. The sign
of κ12 changes under the transformation q1 ↔ q∗1 , q2 ↔ q∗2 . Its numerical value changes
under the transformation τ̃ = τ/a, χ̃ = χ/a, q̃1 = aq1, q̃2 = aq2, κ̃12 = κ12/a. Here,
without loss in generality, we will take κ̃12 = 2. If, finally, we apply a transformation
q̃1 = q1 exp(iχ), q̃2 = q2 exp(2iχ) and, afterward, omit the tildes we arrive at

∂χq1 = iq1 − 2q2q
∗
1 (9)

∂τ q2 = q2
1 + 2i|q1|2q2 = −iq1(iq1 − 2q2q

∗
1 ) (10)

and this is the system of equations that will be investigated below. This last step physically
corresponds to a redefinition of the split carrier waves. All further investigations refer to the
normal form (9), (10) of our dynamical system.

We notice that the equations are invariant under the scale transformation q̃1 = bq1, τ̃ =
t/b2.

Next we will establish that it is indeed integrable by the spectral transform (or inverse
scattering) method.

3. The linear system and the Riccati equations

The above equations (9) and (10) prove to be the integrability conditions of the partial
differential equations

∂χφ = ζ
(−iζ 2q∗2

2q2 iζ

)
φ ≡ Uφ (11)

∂τφ = iζ

1− ζ 2
V1φ ≡ V φ (12)

with

V1 =
(
ζ |q1|2 q∗21
−q2

1 −ζ |q1|2
)
. (13)

Here φ is a two-component column vector, φ = (ϕ1, ϕ2)
T. With the definition β ≡ ϕ2/ϕ1

from (11)–(13) we obtain the Riccati equations

∂χβ = 2ζ(iζβ + q2 − q∗2β2) (14)

∂τβ = iζ

ζ 2 − 1
(2ζ |q1|2β + q2

1 + q∗21 β2) (15)

and the integrability condition for these simultaneous Riccati equations as well is equivalent
to our system (9), (10). For later use the following observations are worth noting:
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(i) If β solves (14) and (15) then 1/β∗ solves the same equations with ζ replaced by −ζ ∗.
(ii) For ζ real one may easily derive equations of the structure

∂χ(β
∗β) = something× (β∗β − 1) ∂τ (β

∗β) = something× (β∗β − 1) (16)

so that if |β| = 1 is true anywhere the same holds everywhere.
Equation (11) defines a 2×2-scattering problem of second order in the spectral parameter

ζ . Remarkably, the same scattering problem appeared in connection with the derivative
nonlinear Schrödinger (DNLS) equation [15].

4. The one-step Darboux/Bäcklund transformation

The term Darboux transformation denotes a method to derive from one solution of some
scattering problem—(11) in our case—with specified potential a new solution with some
transformed potential. When extended to a simultaneous linear system—(11), (12) in our
case—Darboux transformations become Bäcklund transformations, which then include a
transformation of solutions to the related nonlinear evolution equation(s)—in our case (1)
and (2). Darboux transformations for the scattering problem defined by (11) were constructed
by several authors [16–19]. Here we will follow the procedure developed in [20] and in this way
establish Bäcklund transformations to our system (11), (12). Iteration of this procedure leads
to a hierarchy of solutions. We may start from vacuum (q1 = q2 = 0) or from monochromatic
waves as the seed solutions. First let us consider a scattering problem slightly more general
than (11)

∂χφ = ζ(ζJ + Q)φ

J =
(−i 0

0 i

)
Q =

(
0 q(χ)

r(χ) 0

)
(17)

and, for a moment, omit the τ -dependence. The corresponding Riccati equation then reads

∂χβ = ζ(2iζβ + r − qβ2). (18)

Theorem (Darboux transformation). Given one particular solution {φ1(χ), ζ1, q(χ), r(χ)}
to (11) or {β1(χ), ζ1, q(χ), r(χ)} to (18) we define the matrix

M1(ζ ) =
(
β1ζ/ζ1 −1
−1 α1ζ/ζ1

)
α1 ≡ 1/β1. (19)

Then from any solution {φ, ζ, q, r} to (11) a new solution {φ̃, ζ, q̃, r̃} is found by the Darboux
transformation

φ̃ = M1φ q̃ = β1(β1q − 2iζ1) r̃ = α1(α1r + 2iζ1). (20)

The proof is easy and straightforward and may be omitted here.

Commutativity

When we apply two Darboux transformations with the parameters ζ1 and ζ2 successively and
denote by β12 the corresponding β-function at the second step we may derive an auxilary
relation,

β1β12 = β2β21 = β2ζ2 − β1ζ1

β1ζ2 − β2ζ1
. (21)

By use of this relation it can easily be confirmed that Darboux transformations commute.
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For later use it is of importance to notice that the matrix function M alternatively could
be characterized by the properties

(1) M1(ζ1)φ1 ≡ 0 (2) M1(0) =
(

0 −1
−1 0

)
. (22)

Principally, there is some arbitrariness in the choice of the normalization (2).

Reduction. If r = q∗, ζ1 real and β1 is chosen of modulus 1 then it follows that α1 = β∗1 , r̃ =
q̃∗. That is, the symmetry r = q∗ is conserved.

Corollary (Bäcklund transformation). Given one particular simultaneous solution
{β1(χ, τ ), ζ1, q1(χ, τ ), q2(χ, τ )} to (11) and (12) with ζ1 real and |β1| = 1 the subsequent
formulae together with (19) define a transformation of any solution {φ, ζ, q1, q2} to (11)
and (12) to a new solution {φ̃, ζ, q̃1, q̃2},

φ̃ = M1φ (23)

q̃1 = α1q1 + ζ1q
∗
1√

1− ζ 2
1

(24)

q̃2 = α1(α1q2 + iζ1). (25)

The proof can be executed by direct verification.
As a consequence, equations (24) and (25) define a transformation

{q1, q2} → {q̃1, q̃2} (26)

of solutions to (9) and (10).

5. The N -fold Darboux/Bäcklund transform

Now we return to the spectral problem (11) with no reduction so far and suppressing the τ -
dependence. GivenN solutions {βk, ζk}, k = 1, . . . , N to (14) with fixed potentials q(χ), r(χ)
then for the N -fold Darboux transform the wavefunction is an N th-order polynomial in ζ ,

φ[N ] = MN(ζ )φ MN(ζ ) =
N∑
k=0

Pkζ
k. (27)

From the iteration of (19) the coefficients Pk acquire the structure

Pk =




(
0 pk
sk 0

)
N − k odd(

pk 0
0 sk

)
N − k even

(28)

and thus we may write

MN(ζ ) =
( PN(ζ ) PN−1(ζ )

SN−1(ζ ) SN(ζ )
)

(29)

with

P2l+1(ζ ) ≡
l∑

m=0

p2m+1ζ
2m+1 P2l(ζ ) ≡

l∑
m=0

p2mζ
2m (30)
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and the same equations with p,P replaced by s,S. P0 becomes off-diagonal for N odd and
diagonal for N even, and we obtain p0 = s0 = ±1. Because there is an arbitrary constant
overall factor we may choose

p0 = s0 = −1. (31)

From M1(ζ1)φ1 = 0 (cf (22)) together with commutativity it follows that

MN(ζj )φj = 0 j = 1, . . . , N. (32)

Thus we arrive at two complete systems of linear algebraic equations separately for pk and
for sk, k = 1, . . . , N . We have to distinguish whether N is odd or even, and will write down
the coefficients pN and pN−1 explicitly because we will see below that it is just these entities
which are required, and we will use the notation of Vandermonde-like determinants (see the
appendix). Determinants of such a type have been used by several authors [21, 22]. To the
best of our knowledge their structure was first investigated in a systematic way in [5, 23].
N = 2n + 1:

n∑
k=1

p2kζ
2k
j +

n∑
k=0

p2k+1ζ
2k+1
j αj = 1 (33)

n∑
k=1

s2kζ
2k
j +

n∑
k=0

s2k+1ζ
2k+1
j βj = 1 (34)

p2n+1 =
Vn+1,n(1j ; ζjαj |ζ 2

j )

Vn,n+1(ζ
2
j ; ζjαj |ζ 2

j )
(35)

p2n = (−1)n−1
Vn,n+1(1j ; ζjαj |ζ 2

j )

Vn,n+1(ζ
2
j ; ζjαj |ζ 2

j )
(36)

N = 2n:
n∑
k=1

p2kζ
2k
j +

n∑
k=1

p2k−1ζ
2k−1
j βj = 1 (37)

n∑
k=1

s2kζ
2k
j +

n∑
k=1

s2k−1ζ
2k−1
j αj = 1 (38)

p2n = (−1)n−1
Vnn(1j ; ζjβj |ζ 2

j )

Vnn(ζ 2
j ; ζjβj |ζ 2

j )
(39)

p2n−1 = −
Vn+1,n−1(1j ; ζjβj |ζ 2

j )

Vnn(ζ 2
j ; ζjβj |ζ 2

j )
. (40)

Here j runs from unity toN , and the notation ‘(1j ; . . .)’ means thatN arguments are put equal
to unity. In both cases—N odd or even—sN and sN−1 are easily found from the respective
formulae for pN and pN−1 because it holds generally that

sk = pk(α←→ β). (41)

Let us write the transformed spectral problem in the form

φ[N ]
x = ζ(ζJ + Q[N ])φ[N ]. (42)

Substitution of (27) into (11) and (42) and comparison of powers in ζ leads to

[P0, J ] = 0
[P1, J ] + P0Q−Q[N ]P0 = 0

Pk−1,x + [Pk+1, J ] + PkQ−Q[N ]Pk = 0 k = 1..N − 1
PN−1,x + PNQ−Q[N ]PN = 0

(43)
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and from the second equation of this system we obtain

q [N ] = pNq + 2ipN−1

sN
r [N ] = sNr − 2isN−1

pN
. (44)

Reduction r = q∗. Then one has to take the eigenvalues as real or as complex conjugate pairs,
ζl = ζ ∗k , and to choose

(i) |βj | = 1 for real ζj , and
(ii) βl = 1/β∗k = α∗k when ζl = ζ ∗k .

Then we obtain either sj = p∗j or sk = p∗l respectively and therefore Sk(ζ ) = Pk(ζ
∗)∗.

Consequently the required symmetry is conserved.
If now we assume that q1(χ, τ ), q2(χ, τ ) are solutions to the equations (1) and (2) and

βk are simultaneous solutions to the Riccati equations (14) and (15) then we know that there
exists an N -step Bäcklund transform, and by the above formulae it is determined uniquely
with the identification q = 2q∗2 , r = 2q2. To complete the transformation we would like to
have a formula for q [N ]

1 . As a preparation it is useful to obtain formulae for the polynomials
PN(ζ ),PN−1(ζ ) at an arbitrary argument ζ .

For N = 2n + 1 we may take the formal equation

−P2n+1(ζ ) +
n∑
k=0

p2k+1ζ
2k+1 = 0 (45)

together with (33) and read this as a system of 2n + 2 equations for determining the 2n + 2
unknowns (P2n+1(ζ ), pj ). Then, by use of Cramer’s rule, we arrive at
N = 2n + 1

P2n+1(ζ ) = −
Vn+1,n+1(0, 1j ; ζ, ζjαj |ζ 2, ζ 2

j )

Vn,n+1(ζ
2
j ; ζjαj |ζ 2

j )
(46)

and in quite an analogous way we write

−P2n(ζ ) +
n∑
k=1

p2kζ
2k = 1 (47)

and combine this equation with the system (33). Then we find

P2n(ζ ) = −
Vn+1,n+1(1, 1j ; 0, ζjαj |ζ 2, ζ 2

j )

Vn,n+1(ζ
2
j ; ζjαj |ζ 2

j )
. (48)

Similarly we proceed for even N .
N = 2n

P2n−1(ζ ) = −
Vn+1,n(0, 1j ; ζ, ζjβj |ζ 2, ζ 2

j )

Vn,n(ζ 2
j ; ζjβj |ζ 2

j )
(49)

P2n(ζ ) = −
Vn+1,n(1, 1j ; 0, ζjβj |ζ 2, ζ 2

j )

Vn,n(ζ 2
j ; ζjβj |ζ 2

j )
. (50)

Now we wish to obtain the transformation of the matrix V1 in (12). By differentiation of (27)
and substitution of φτ by (12) and φ[N ]

τ by

∂τφ
[N ] = iζ

1− ζ 2
V

[N ]
1 φ[N ] (51)

and multiplication by (1− ζ 2) we obtain

(1− ζ 2)∂τMN = iζ(V [N ]
1 MN −MNV1) (52)
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with

MN(ζ ) =
( PN(ζ ) PN−1(ζ )

P∗N−1(ζ ) P∗N(ζ )
)
. (53)

Taking this equation at ζ = 1 we arrive at

V
[N ]

1 = MN(1)V1M
−1
N (1). (54)

The normalized matrix

M̄N ≡ MN(1)/
√
DN

DN = detMN(1)
(55)

may be written

M̄N =
(

mN mN−1

m∗N−1 m∗N

)
. (56)

N odd:

mN = PN(1)/
√
DN mN−1 = PN−1(1)/

√
DN. (57)

N even:

mN = [PN(1)− 1]/
√
DN mN−1 = PN−1(1)/

√
DN. (58)

MN is a unitary unimodular matrix. It can easily be checked that V [N ]
1 takes the same form as

V1 in (13)with

q
[N ]
1 = m∗Nq1 −m∗N−1q

∗
1 . (59)

The transformation of q2 is given by formula (44), from which due to symmetry and with
recalling q = 2q∗2 we obtain

q
[N ]
2 = p∗Nq2 − ip∗N−1

pN
. (60)

Now the formulae for the N -fold Bäcklund transformation are complete.

6. Simple seed solutions and the related solutions to the Riccati equations

When starting from vacuum q1 = q2 = 0 (14), (15) leads to the solution

β = C exp[2iζ 2χ ] (61)

independent of τ . Then, according to (24) and (25), the one-step Bäcklund transform is a
monochromatic harmonic wave depending on χ only while the ground wave is vanishing.
Iteration generally leads to solutions with q2 a function of χ alone and q1 ≡ 0.

Let us look for a seed solution different from vacuum. It is easy to see that the
monochromatic waves

q1 = a1ei(kχ−wτ)

q2 = ia2e2i(kχ−wτ) (62)

fulfil (9), (10) provided that it holds that

k = 1− 2a2a
∗
1/a1 w = ka2

1/2a2 (63)

with k,w real. Omitting an arbitrary phase factor from a1 we may take the amplitudes a1, a2

as real (but admit negative values a2).
Before applying a Bäcklund transformation to such a seed solution it is of interest to study

the nature of these solutions itself and, in particular, to require their stability. When in (62) we
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replace ak by ak + bk(χ, τ ) + ick(χ, τ ), k = 1, 2 with b2
k , c

2
k � a2

k then substitution into (9)
and (10) taking only first-order terms leads to linear partial differential equations:

b1χ = −4a2c1 + 2a1c2

c1χ = −2a1b2

b2τ = 2a1c1 − (a2
1/a2)c2

c2τ = 2a1(2a2 − 1)b1 + (a2
1/a2)b2.

(64)

Then an ansatz with the common factor exp[i(Kχ −Wτ)] leads to the dispersion relation:

either K = 0 W arbitrary (65)

or K = 8a2
1a

2
2(1− a2)W

a4
1 − a2

2W
2

. (66)

From this dispersion relation we may conclude that the monochromatic wave solutions are, at
least, ‘stable’ in the sense that an exponential growth of infinitesimal perturbations does not
take place.

From (14) and (15) with the specifications (62) and (63) and taking

β1 = γ1 exp[2i(kχ − wτ)] (67)

we obtain Riccati equations with constant coefficients for γ1, which are easily solved,

γ1 = −(c + bC) tanh[d(χ − vτ)] + iCd

(cC + b) tanh[d(χ − vτ)] + id
(68)

b = (ζ 2
1 − k) c = 2a2ζ1 (69)

d =
√
c2 − b2 v = a2

1

2a2(1− ζ 2
1 )
. (70)

7. The phenomenology of solitons

Now we are able to study the properties of N -soliton solutions and, in particular, to depict
them by computer graphics. As we shall see, there is already a rich manifold of one-soliton
solutions.

One-soliton solutions

In (68) C is an integration constant. When ζ1 = ξ1 real, k chosen such that d2 =
(ξ 2

1 − k2)(1 − ξ 2
1 ) > 0 and C taken of modulus 1 then γ1 becomes of modulus 1 as well.

By use of a shift in space C may be transformed to +1 or −1 so that—with respect to a one-
soliton solution—we may put C = ±1 for convenience. From (19), (24), (25) and (67) then
we may derive simple intensity formulae,

|q [1]
1 |2 = |a1|2 1 + ξ 2

1 + 2ξ1Re γ1

|1− ξ1|2 (71)

|q[1]
2 |2 = a2

2 + ξ 2
1 + 2a2ξ1Re γ1 (72)

with the respective asymptotic values

|q[1]
1 |2asy = |a2

1(a
−1
2 − 1)| (73)

|q [1]
2 |2asy = (a2 − 1)2. (74)

The auxiliary function γ1 asymptotically becomes constant and, clearly, in the asymptotic
region a Bäcklund transformation causes a mapping among the set of monochromatic wave
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Figure 1. Six regions of solitons in the k − ξ1 plane. B = ‘bright’, D = ‘dark’. The first letter
refers to the ground wave, the second to the harmonic wave.

Figure 2. Four types of soliton. BB, a1 = 0.4, k = 0.2, ξ1 = 0.4; BD, a1 = 1.2, k = 3, ξ1 = 2;
DB, a1 = 2, k = 3, ξ1 = −2; DD, a1 = 0.9, k = −2, ξ1 = −1.5. Dashed and full curves indicate
the ground and harmonic waves respectively.

solutions (62), (63) up to constant phase factors. This mapping can be characterized by the
rules (k, w) change sign, a2

1/a2 are invariant and |a1| transforms to |1 − a2|. Consequently,
after two steps the asymptotic state is restored (up to constant phase factors).

The condition d2 = (ξ 2
1−k2)(1−ξ 2

1 ) > 0 defines six admissible regions in the k−ξ1 plane
(see figure 1). For both waves the solutions might appear as bright (B) or as dark (D) solitons
and all four combinations may occur. For brevity we use the notation ‘BD’ with the meaning
‘bright soliton of the fundamental wave combined with a dark soliton of the harmonic wave’
and, correspondingly, DB, BB, DD. In figure 2 examples of all these four types of combined
soliton are depicted.

Two-soliton solutions and breathers

By choosing ζ1 = ξ1, ζ2 = ξ2 both real and combined with admissible values k1, k2 we may
establish β1, β2 corresponding to (67) and (68). Then the two-soliton solutions are determined
by (39), (40), (49), (50), (58) , (59) and (60) specified to n = 1, N = 2, and the result can be
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Figure 3. Breather-type solution at fixed τ .a1 = 1, k = −2, ζ1 = 0.2 + i, ζ2 = 0.2− i.

written in the form

q
[2]
1 =

K∗1 + ζ ∗1 ζ
∗
2K
∗
2 + K∗3

K∗2
√

1− ζ ∗1
√

1− ζ ∗1
ei(−kχ+wτ) (75)

q
[2]
2 = i

K∗1a2 + K∗3
K∗2

e2i(−kχ+wτ) (76)

by use of the abbreviations

K1 = ζ1γ1 − ζ2γ2

K2 = ζ1γ2 − ζ2γ1

K3 = ζ 2
1 − ζ 2

2 .

(77)

For ζ1, ζ2 taken real and consistent with figure 1 these formulae give an interacting two-soliton
solution while for ζ2 = ζ ∗1 a breather-type solution appears. In figure 3 a snapshot of such a
breather-type solution is depicted.

Higher N -soliton collisions

As mentioned above, the same scattering problem (11) also appeared for the DNLS equation.
Thus the Darboux transformation technique is the same for both problems. For the DNLS
equation computer pictures up to N = 8 were generated in [20], and we could do the same for
our present problem. The present situation, however, is more complicated because there are
two components instead of one. As an example here we depict only a four-soliton solution:
figure 4 presents three-dimensional plots of the intensities with two different choices of the
scale in order to see both the asymptotic structure (left) and the collision centre (right).

8. Conclusion

We have found a rich manifold of soliton solutions for SHG with cross-phase modulation due
to the optical Kerr terms being included. On the other hand, it is well known that for the ‘pure’
SHG equations without Kerr terms no soliton solutions exist. Our approach giving N -soliton
formulae in terms of Vandermonde-like determinants proves to be well suited for numerical
evaluation.

As a final remark we note that this approach somewhat parallels the systematic use of
Wronskians for establishing N -soliton formulae (see, e.g., [24, 25]). One advantage of the
formulae in terms of Vandermonde-like determinants is that no derivatives of high-order
determinants appear as is typical for the approach using Wronskians.
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Figure 4. Example of a four-soliton solution. a1 = 3, k = −7, ξ1−4 = −2, −2.2, −2.5, −3.5.

(This figure is in colour only in the electronic version)
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Appendix. Vandermonde-like determinants

Vandermonde-like determinants are defined as follows [23],

VMN(ar; br |xr)

:=

∣∣∣∣∣∣∣∣

a1 a1x1 · · · a1x
M−1
1 b1 b1x1 · · · b1x

N−1
1

a2 a2x2 · · · a2x
M−1
2 b2 b2x2 · · · b2x

N−1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aM+N aM+NxM+N · · · aM+Nx

M−1
M+N bM+N bM+NxM+N · · · bM+Nx

N−1
M+N

∣∣∣∣∣∣∣∣
(A.1)
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where r = 1, 2 . . . ,M +N . These determinants have several remarkable structural properties
listed in [23]. In particular there is a reduction formula,

VMN(ar; br |xr) =
∑
P

εP

M∏
j=1

ar(j)

M+N∏
k=M+1

bs(k)VM(xr(1) . . . xr(M))VN(xr(N+1) . . . xs(M+N)).

(A.2)

The sum goes over all permutations P = (r(1), . . . , r(M +N)) of (1, 2 . . .M +N) such that
r(i) < r(j) for i < j � N as well as for N < i < j . εP = +1 for P even or −1 for P
odd. By this formula any Vandermonde-like determinant is generally expressed as a sum over
binary products of genuine Vandermonde determinants VN which are defined by

VN(x1, . . . , xN) :=

∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

. . . . . . . . . . . . . . . . . . . . . .
1 xN x2

N · · · xN−1
N

∣∣∣∣∣∣∣∣
. (A.3)

It is well known and can easily be checked directly that VN can be written as a product of
differences,

VN(x1, . . . , xN) =
∏
i>j

(xi − xj ). (A.4)
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